Research article

Detection of some heavy metals in poultry meats from some sources of meat and poultry rations
Kadhim H. Abbas

Department of Public health, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq.
Corresponding Author Email: Kadhim.abbas@qu.edu.iq
(Received 3/9/2017, Accepted 28/11/2017)

Abstract
The present study performed to detect the concentration of the toxic heavy metals (lead Pb, cadmium Cd, arsenic As and mercury Hg) in meat and rations of broiler chickens, and their effect on animals and human public health. Seventy samples were collected 40 samples of broiler chickens highly demined by the consumers in Al-Diwaniyah markets, these samples included: 10 samples of each of the Brazilian frozen chicken (Al-kafeel), Turkish frozen chicken (Barakat Al-kadhimian), Iranian frozen chicken (Al-mahdi) and broiler chicken from local breeding, also 30 samples from the poultry final rations highly bought by breeder of chicken in the province which include 10 samples from each of the Al-kadra, Al-waha ratios and ratio which locally manufactured in the Al-Diwaniyah factory. The thighs and breast muscles of the chicken samples were then separated from the chicken body, while the edible offal (liver and gizzard) for these samples collected from same sources. Atomic absorption spectrophotometer (England origin) used to estimate the heavy metals residues. The results showed a significant variances ($p≤0.05$) for comparative means in the concentrations of the studied heavy metals (Pb, Cd, As and Hg) among examined organs and muscles, generally, the highest concentration were detected in the liver followed by gizzard, then thigh muscle and breast muscle in all examined samples, though, the concentrations stay under permissible standardization limits which recorded by WHO/FAO, European, Gulf Standardization Organization (GSO) and Egyptian organization for standardization and quality control (EOS). In the ratios, the highest concentrations recorded were in locally manufactured ratio followed by Al-Kadra, then Al-Waha ratio, the means also remained under standardization permissible limits allowed by the National research council (NRC) to mineral tolerance in animals feed.

Key wards: Al-Diwaniyah, Heavy metals, Poultry ratios, Meat.

Introduction
Poultry meat and products play an important role as protein source in the world, specifically in developing countries. The risk of antibacterial agents residues used in poultry breeding received more attention than toxicity with heavy metal residues, which have a bioaccumulation properties in animal's body affecting the functions of body organs, and resulting in many diseases (1, 2). The heavy metals residues reach the organs of chickens body from feeding on crops growing in a soil watered from artesian wells water or drinking water contaminated with heavy metals, also from agricultural fertilizers and pesticides (3). Although trace elements (Fe, Cu, Zn and Mn.) play an important role in biological body functions, however, an adverse effect on body organs may also result from exposure to high levels of these elements. On the other hand, a consumption of ratio and drinking water contaminated with heavy metals, especially Pb, Cd, As are toxic even in trace amounts as classified by the European Union for hazardous metals (4). It was necessary from health institutions to set standardization limits to determinant permissible and non-permissible levels of these metals in food.
intake (4). Environmental pollution with heavy metals is very dangerous as the contaminants are not biodegradable or breakable (5). Some studies suggested that high rates of Pb in poultry organs lead to clear immunosuppressant, as well as weakness in growth, loss of weight and low consumption of ratio. There are many diseases caused by lead toxicity in children as encephalopathy that characterized by irritability, convulsions, ataxia and altered of consciousness also in adult toxicity of lead cause nephropathy (6). Cd naturally occur in earth crust from volcanic emissions and reach concentration on the earth crust 0.1 mg/kg other sources for this element factory waste, sludge, sewage and fertilizers, its toxicity symptoms in birds characterized by respiratory disturbances and gizzard attribute and nephropathy, uremia, decrease glomerular filtration rate and signs in human as hypertension hepatonecrosis, lung necrosis, osteoporosis and osteomalasia (Itia-Itia disease) (7, 3). Spread of As in environment as As2O3 in major percentage in earth crust reach to animals and humans tissues by contaminated food planting in highly concentrated contamination, the health originations regarded the As toxicity as a predisposing factor for cancer generation (carcinogenic) (8,4). There are two form of Hg (organic and inorganic), organic form converted to toxic inorganic form by spread of microflora in environment (9,4). Toxicity of Hg lead to associate with essential body enzyme stimulants and leads to inhibition of vital functional processes (5). The current study was designed to detect the concentrations of toxic heavy metals in the meat of broilers (liver, gizzard, thigh and breast muscles) as well as in some types of broiler ratios in Al-Diwaniyah city and compared with Arabian and global permissible limits recorded Iraqi standardization for these metals.

Material and Methods

Ethical approval

The Animal Ethical Committee of Veterinary Medicine College, University of Al-Qadisiyah, Iraq, has approved the present study under permission No: 131.

Seventy samples collected involved 40 samples of the most consumed chicken meat in AL-Diwaniyah province markets 10 samples of frozen Brazilian chicken (Al-kafeel), 10 Turkish frozen chicken (Barakat Al-kadhimian), 10 frozen Iranian chicken (Al-mahdi) and chicken breeding in the fields of Al-Diwaniyah city center. Chicken cutting to the thigh and breast muscles and edible offal (liver and gizzard) collected from same source, also collected 30 samples final ratios which included 10 samples of Al-khdara, 10 Al-wha and 10 ration manufactured by locally factory. The samples digested to prepared as clear solution to measure by the Atomic absorption spectrophotometer (England origin) which depend on changing the metals from atoms to ionic form by flam till to measuring with light from lumps for each metal, prepared samples with wet digestion by using 10 ml of nitric acid and 5 ml of boric acid were used to 1 gm of the well-granted sample for 24 hours until we obtained a clear solution complete with demonized water till measurement, standard solutions presented at 10 ppm, 20 ppm and 30 ppm for Pb, Cd and As to calibration of apparatus the wavelength of each metal as determined by the device, estimation Hg measured with cold evaporation method (10,11,12).

<table>
<thead>
<tr>
<th>Samples/metals</th>
<th>Permissible limit</th>
<th>Pb</th>
<th>Cd</th>
<th>As</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken meat Ppm</td>
<td>Arabian</td>
<td>0.02-1</td>
<td>0.01-1</td>
<td>0.1-1</td>
<td>0.01-0.5</td>
</tr>
<tr>
<td></td>
<td>World organization</td>
<td>0.2</td>
<td>0.5</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Chicken ratio mg/kg</td>
<td>World organization</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>1</td>
</tr>
</tbody>
</table>

Table (1) Arabian and global permissible limits of heavy metals (4, 5, 13, 14, 15).
Statistical analysis

Data analyzed by Statistical Package for the Social Sciences (SPSS) program (version 21) with one way ANOVA probability (p<0.05) to determine of significant variances among means (16).

Results

From Table (2) it is revealed that concentrations of the Pb remained within the limits allowed by WHO/FAO and Arabian limits, but the highest concentration recorded in the liver followed by the muscle of the thigh and then the breast muscle. Cd concentrations recorded the highest rates in frozen and Turkish chickens, followed by the Brazilian and Iranian origin Table (3) stays under permissible standardization limit with significant variances in concentrations among examined parts. The concentration of As recorded significant variances (p<0.05) among examines organs where the highest rates in the local meat and Turkish origin followed by the Iranian and Brazilian meat established and remained within the standardization of permissible limits. Table (4) concentration of Hg in examined sample recorded significant variances in liver and gizzard then in thigh and breast muscles while concentration of this metal stay under standardization permissible limit. This showed in table (5). From table (6) showed concentration of heavy metals in poultry rations samples recorded a significant increases (p<0.05) in concentrations of Pb in locally made ratio while Cd recorded a significant increase (p<0.05) in Al-khodra ratio. While As concentration recorded significances (p<0.05) in locally manufactured ratio, all concentration remained within standardization permissible limits allowed by NRC.

Table (2): Pb concentration ppm in examined parts of broiler chickens (mean ± SE)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Parts</th>
<th>Liver</th>
<th>Thigh</th>
<th>Breast</th>
<th>Gizzard</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazilian frozen chicken</td>
<td></td>
<td>0.397 ± 0.034 Bb</td>
<td>0.201 ± 0.029 Ba</td>
<td>0.147 ± 0.015 Bb</td>
<td>0.280 ± 0.012 Ba</td>
<td>0.256</td>
</tr>
<tr>
<td>(Al-kafeel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkish frozen chicken</td>
<td></td>
<td>0.566 ± 0.022 Aa</td>
<td>0.305 ± 0.065 Ab</td>
<td>0.260 ± 0.012 Ac</td>
<td>0.390 ± 0.011 Ab</td>
<td>0.380</td>
</tr>
<tr>
<td>(Barakat Al-kadmian)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iranian frozen chicken</td>
<td></td>
<td>0.418 ± 0.023 Bb</td>
<td>0.199 ± 0.015 Bb</td>
<td>0.177 ± 0.031 Bb</td>
<td>0.266 ± 0.019 Ba</td>
<td>0.265</td>
</tr>
<tr>
<td>(Al-Mahdi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locally breeding fresh chicken</td>
<td></td>
<td>0.619 ± 0.015 Aa</td>
<td>0.273 ± 0.009 Ab</td>
<td>0.247 ± 0.011 Ab</td>
<td>0.381 ± 0.023 Aa</td>
<td>0.380</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.5</td>
<td>0.244</td>
<td>0.207</td>
<td>0.329</td>
<td></td>
</tr>
</tbody>
</table>

Capital letters pointed to significances (p<0.05) in columns
Small letters pointed to significances (p<0.05) in rows

Table (3) Cd concentration ppm in examined parts of broiler chickens (mean ±SE)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Parts</th>
<th>Liver</th>
<th>Thigh</th>
<th>Breast</th>
<th>Gizzard</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazilian frozen chicken</td>
<td></td>
<td>0.061 ± 0.015 Bb</td>
<td>0.037 ± 0.008 Bb</td>
<td>0.043 ± 0.006 Bc</td>
<td>0.035 ± 0.011 Bb</td>
<td>0.053</td>
</tr>
<tr>
<td>(Al-kafeel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkish frozen chicken</td>
<td></td>
<td>0.082 ± 0.007 Aa</td>
<td>0.071 ± 0.009 Ab</td>
<td>0.062 ± 0.005 Bc</td>
<td>0.051 ± 0.003 Ac</td>
<td>0.066</td>
</tr>
<tr>
<td>(Barakat Al-kadhimain)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iranian frozen chicken</td>
<td></td>
<td>0.068 ± 0.002 Bb</td>
<td>0.048 ± 0.0120 Bb</td>
<td>0.045 ± 0.003 Bb</td>
<td>0.043 ± 0.02 Bb</td>
<td>0.051</td>
</tr>
<tr>
<td>(Al-Mahdi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locally breeding fresh chicken</td>
<td></td>
<td>0.092 ± 0.013 Aa</td>
<td>0.068 ± 0.005 Ab</td>
<td>0.069 ± 0.002 Ab</td>
<td>0.054 ± 0.010 Ab</td>
<td>0.070</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.075</td>
<td>0.056</td>
<td>0.054</td>
<td>0.045</td>
<td></td>
</tr>
</tbody>
</table>

Capital letters pointed to significances (p<0.05) in columns, also Small letters pointed to significances (p<0.05) in rows
Table (4); As concentration ppm in examined parts of chicken (mean ± SE)

<table>
<thead>
<tr>
<th>Samples / parts</th>
<th>Liver</th>
<th>Thigh</th>
<th>Breast</th>
<th>Gizzard</th>
<th>Mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazilian frozen chicken(Al-Kafeel)</td>
<td>0.040 ± 0.005</td>
<td>0.025 ± 0.004</td>
<td>0.009 ± 0.001</td>
<td>0.035 ± 0.022</td>
<td>0.027</td>
</tr>
<tr>
<td>Turkish frozen chicken(Barkat Al-Kadmind)</td>
<td>0.051 ± 0.004</td>
<td>0.039 ± 0.002</td>
<td>0.035 ± 0.001</td>
<td>0.044 ± 0.003</td>
<td>0.042</td>
</tr>
<tr>
<td>Iranian frozen chicken(Al-Mahdi)</td>
<td>0.048 ± 0.009</td>
<td>0.022 ± 0.003</td>
<td>0.030 ± 0.003</td>
<td>0.025 ± 0.009</td>
<td>0.030</td>
</tr>
<tr>
<td>Locally breeding fresh chicken</td>
<td>0.052 ± 0.006</td>
<td>0.047 ± 0.002</td>
<td>0.039 ± 0.006</td>
<td>0.047 ± 0.003</td>
<td>0.045</td>
</tr>
<tr>
<td>Mean</td>
<td>0.047 ± 0.009</td>
<td>0.033 ± 0.001</td>
<td>0.028 ± 0.002</td>
<td>0.037 ± 0.002</td>
<td></td>
</tr>
</tbody>
</table>

Capital letters pointed to significances (p < 0.05) in columns, also small letters pointed to significances (p < 0.05) in rows.

Table (5) Hg concentration ppm in examined parts of chicken (mean ± SE)

<table>
<thead>
<tr>
<th>Samples / parts</th>
<th>Liver</th>
<th>Thigh</th>
<th>Breast</th>
<th>Mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazilian frozen chicken(Al-Kafeel)</td>
<td>0.351 ± 0.034</td>
<td>0.250 ± 0.021</td>
<td>0.199 ± 0.024</td>
<td>0.251 ± 0.041</td>
</tr>
<tr>
<td>Turkish frozen chicken(Barkat Al-Kadmind)</td>
<td>0.720 ± 0.042</td>
<td>0.291 ± 0.034</td>
<td>0.277 ± 0.066</td>
<td>0.401 ± 0.050</td>
</tr>
<tr>
<td>Iranian frozen chicken(Al-Mahdi)</td>
<td>0.386 ± 0.065</td>
<td>0.225 ± 0.094</td>
<td>0.183 ± 0.022</td>
<td>0.362 ± 0.023</td>
</tr>
<tr>
<td>Locally breeding fresh chicken</td>
<td>0.689 ± 0.012</td>
<td>0.278 ± 0.051</td>
<td>0.250 ± 0.019</td>
<td>0.396 ± 0.066</td>
</tr>
<tr>
<td>Mean</td>
<td>0.536 ± 0.031</td>
<td>0.261 ± 0.033</td>
<td>0.227 ± 0.042</td>
<td>0.352 ± 0.043</td>
</tr>
</tbody>
</table>

Capital letters pointed to significances (p < 0.05) in columns, also small letters pointed to significances (p < 0.05) in rows.

Table (6) concentration of heavy metals mg/kg in ration of broiler chickens.

<table>
<thead>
<tr>
<th>Ratio / metals</th>
<th>Pb</th>
<th>Cd</th>
<th>As</th>
<th>Hg</th>
<th>Mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-kadra</td>
<td>8.105 ±0.38</td>
<td>7.985±0.274</td>
<td>20.661±0.106</td>
<td>0.596 ±0.22</td>
<td>9.336</td>
</tr>
<tr>
<td>Al-waha</td>
<td>7.824 ±0.54</td>
<td>6.203±0.165</td>
<td>19.220±0.322</td>
<td>0.750 ±0.45</td>
<td>8.499</td>
</tr>
<tr>
<td>Locally manufactured feeds</td>
<td>9.151 ±0.81</td>
<td>7.908±0.531</td>
<td>27.123±0.219</td>
<td>0.880 ±0.67</td>
<td>11.265</td>
</tr>
<tr>
<td>Mean</td>
<td>8.360</td>
<td>7.365</td>
<td>22.334</td>
<td>0.742</td>
<td></td>
</tr>
</tbody>
</table>

Capital letters pointed to significances (p < 0.05) in columns.

Discussion

The presence of elements in the human and animals food is naturally such as trace elements and the lack of them cause imbalance in the body functions while the heavy metals if exceeded the limits allowed experimentally by interested in food health organization become a risk for public health(4). The result in Table (2) revealed bioaccumulative of Pb in different examined organs especially in vital organs as liver › gizzard and then muscles this same recorded by (6,11) they suggested these organs are targets for toxins included heavy metals, while the concentrations of Pb stay under standardization permissible limits which recorded by FOA/WHO. Contamination sources by this element resulted from human activates and car and generators exhaust and human activities in large factories which cause highly air pollution with Pb in addition that bad using fertilizers then reach to crop and to animals and human tissues as mentioned by (4,10). Table (3) results showed concentration of Cd recorded highly concentrated in liver and gizzard then in muscles this agree with (18,12 and 6) whose recorded highly contamination with this metal in poultry products and gizzard the target organ for bioaccumulation of Cd also concentrations stay under standard
permissible limits (4,14,13). (6) mentioned
the Main source of mercury contamination
are agricultural fertilizers and unscientific
use of agricultural pesticides which
precipitate on agricultural crops which enter
the composition of poultry rations in added to
that contaminated drinking water especially
from artesian wells contain normally highly
concentration of metals play a role to accumulation this metals in body organs.
Table (5) revealed high concentration in gizzard then liver and less than in muscles
this agree with (6,11) whose refer to sources
of contamination with Hg resulted from
fertilizers and pesticides in agriculture also
results not exceed the standard permissible
limit (14,15). That result agree with (18) who
recorded lowest concentration than permissible limit of Hg levels in chicken
meat in Saudi Arabian compared with other
metals in different organs. Contamination of
ratios from different sources contaminated
with heavy metals with different
concentrations with significant increases in
locally industrial this result from contamination ration from environment and
bad using of fertilizers but all concentration
also not exceed the permissible limit which
recorded by NRC 2005 this same recorded by
(10) who attribute that because using crops
contain different levels from heavy metals
without assessment before instillation of
poultry rations. In spite of the lower
concentrations of heavy elements in poultry
meats and ratios, we must overlook the fact
that as possess a biocumulative feature in the
body organs which requires routinely and
periodic examination for all sources of food
imported to our country (11,19,20) and its
necessary to determine the standard
permissible metal limits by Iraqi central
organization for standardization and quality
control(COSQC).

References
1-D'Mello JPF Food safety :contamination and toxins.
CABT publishing, Wallingford, UK, Cambridge,
2-Pikkemmt M, Rapallinib M, Dijkstra S, Elferinka
J.comparison of three microbial screening methods
for antibiotic using monitoring sample. Analytic
chimes acta, (2009); 637,298-304.
3-Faten S, Hassan M, Amira M, Enas A. Heavy
metals residues in some chicken meat product,
Benha Veterinary Medical Journal, (2014);27(2),
256-263.
4-European Commission. Opinion of the scientific
committee on animal nutrition and sireable
substances in feed European commission, health
and consumer's protection directorate, Brussels,
5-National Research Council (NRC). Mineral
Committee on minerals and toxic substances in
diets and water in animals, (2005);1-6.
6-Elsharawy NTM. Some heavy metals residues in
chicken meat and their edible offal in New Valley.
Second conference of food safety, Suez Canal
University, faculty of veterinary medicine Vol.1,
August, (2015); 2015, 53-60.
7-Akan J, Abdurrahman F, Sodipo O, Chirona Y.
Distribution of heavy metals in the liver, gizzard
and meat of beef, mutton, caprina and chicken
from kasuwan Shanu markets in maidngue.
Metropolis bovine state. Nigeria, research journal
of applied science. Engineering and technology,
(2010);2(8),743-748.
8-Brooks WE. Arsenic in US geological survey
minerals yearbook. Accessed on Aprile, (2002);
2,2005.
9-Nkanash MA, Anash JK (2014). Determination of
Cd,Hg,As,Cr and Pb levels in meat from the kunes: central abattoirs. International journal of
10-Okoye CAB, Aneke AU, Ibeto CN, Ihediona JN.
Heavy metal analysis of local and exotic poultry
meat. International journal of applied
11-Hussen RT, Ebraheem MK, Moker HM.
Assessment of heavy metals Cd,Pb and Zn
contents in liver of chicken available in local
markets of Basrah city, Iraq. Basrah Journal of
12-Ersoy I E, Uzatici A, Bilucu E. Possible heavy
metals residues in poultry and their products that
are bred around cement industry. Journal of
animals, Bahra biometrol, Vol.3,No.2, (2015);63-
68.
codex committee of food additive. Contaminants
Maximum limit of pesticides residues and