Research article

Antimicrobial susceptibility and molecular characterization for some virulence factors of *Proteus Mirabilis* isolated from patients in Al-Qadisiyah Province, Iraq

Najlaa Abdallah D. Al-Oqaili\(^1\) Majed Kadim Al-Shebli\(^2\) Azhar N.H. Almousawi\(^3\)

\(^1\) College of Biotechnology/University of Al-Qadisiyah, Iraq
\(^2\) College of Education/University of Al-Qadisiyah, Iraq
\(^3\) College of Pharmacy/ University of Al-Qadisiyah, Iraq

Corresponding Author Email najlaa67890@gmail.com
Co-Author Emails Ardkdhm79@gmail.com az.almousawi@yahoo.com

(Received 19/7/2017, Accepted 8/10/2017)

Abstract

Total of 64 Samples clinical isolates were collected from various sources included urine, ear external swab, wounds swab, burns swab, high cervical and endometrium cervical swab, which was taken from (in-patients) and (out-patients) in Maternal, and General Teaching Hospital in Al-Diwaniyah city during the period from 1/3/2015 till 30/9/2015. The resistance of bacterial isolates to 12 different antibiotics was tested and isolates showed different resistance to anti-β-lactam including penicillin and Amoxicillin/Clavulanic acid by (100%), cefotaxime by (86%), and Cephalexin by (90.62%), Imipenem by (18.75%), and Meropenem by (15.62%). Some of the virulence factors have been studied genetically (20 isolate), in terms of the genetic aspect, five genes were obtained for virulence factors and at varying rates, as the urease enzyme ureC, fimbriae formation mrpA, flagella flaA, hemolysin enzyme hpmA and biofilm formation luxS (60, 40, 100, 45, 55) %, respectively.

Keywords: Antimicrobial susceptibility test, virulence factors genes, PCR, *proteus mirabilis*.

Introduction

Proteus mirabilis is a common causative agent of the severe invasive diseases. This microorganism expresses several virulence factors. *P. mirabilis* can expresses adhesins, flagella, and toxins. *Proteus* is a gram-negative bacteria associating to the Enterobacteriaceae family. Which is distinct from other species by swarming in the surface of agar (23). *Proteus* is a broad distribution in the environment that puts up a portion of the normal flora in a gastrointestinal tract of the human. It is ranked third in a cause of hospital-acquired infections (42). The opportunistic human pathogens represented by three species: *P. vulgaris, P. mirabilis*, and *P. penneri* (21). It is an important source of hospital-acquired infections (17). *P. mirabilis* the main cause of urinary tract infections (31,33,37,12), *P. mirabilis* is a common cause of urinary tract infection, most existing in patients with indwelling catheters and urinary tract structural abnormalities (3), respiratory tract and wounds infections (38), burns and digestive tract infections (44), Ear infection and Otitis media (7). *P. mirabilis* has a wide range of cell-associated factors, it can secreted a lot of factors, some of these factors have been closely related with disease producing potential called virulence factors (16, 39), such as swarming, fimbriae, urease, hemolysin, iron acquisition systems (22), protease and Lipopolysaccharides (LPS)(41). This pathogen have developed several pathogenic factors including which listed above which enable them to colonize, survive and grow in the host organism (16, 40).
Materials and Methods

Ethical approval

The Animal Ethical Committee of Veterinary Medicine College, University of Al-Qadisiyah, Iraq, has approved the present study under permission No: 381

Specimens’ collection

different Samples such as urine, wound swab, burn swab, high cervical, endometrium cervical and ear external swab, which was taken from (in-patients) and (out-patients) after taken the approval of the patient’s in Maternal and General Teaching Hospital in Al-Diwaniya city during the period from 1/3/2015 till 30/9/2015. The collection process has been conducted according to (26).

Identification of Bacterial Isolates

The isolates were identified according to (18) by using traditional microscopic examination (Gram’s stain), colony morphological features on MacConkey agar and blood agar, and standard biochemical tests.

DNA extraction

The total genomic DNA of the P. mirabilis was isolated using the DNA extraction and purification kit (Geneaid, USA) according to the manufacturer instructions. DNA preparations were then analyzed by electrophoresis in 1.5% agarose gel.

Polymerase chain reaction

Polymerase chain reaction was used to amplify the entire sequences of the genes studied in this research. The specific primers (Bioneer, Korea) used for the amplification of these genes (45) were shown in (table 1).

DNA extraction

The total genomic DNA of the P. mirabilis was isolated using the DNA extraction and purification kit (Geneaid, USA) according to the manufacturer instructions. DNA preparations were then analyzed by electrophoresis in 1.5% agarose gel.

Polymerase chain reaction

Polymerase chain reaction was used to amplify the entire sequences of the genes studied in this research. The specific primers (Bioneer, Korea) used for the amplification of these genes (45) were shown in (table 1).

Agarose gel electrophoresis

The products were separated in 1.5% agarose gel in TBE buffer (pH 8), stained with ethidium bromide, and photographed in ultraviolet light (14). The electrophoresis result noticed by using gel documentation system.

Detection of the virulence factors of P. mirabilis

1-Hemolysin production 2-Urease production 3-Biofilm formation 4-Detecting flagella 5-Detecting fimbriae

Antimicrobial susceptibility test (AST)

Determination of antimicrobial agents susceptibility by disk diffusion method (35), Which was gotten from BDH London, UK, which was: penicillin (P), augmentin (AUG), gentamycin (GM), cefotaxime (CTX), cephalxin (CL), amikacin (AK), imipenem (IMP), Meropenem (MEM), Tobramycin (TOB), Kanamycin (K), Netilmicin (NET) and Streptomycin (S). The inoculum were prepared by growing of Proteus mirabilis on dispersed agar plates, then the colonies grow in the plate transferred by loop into a test tube filled with 3 ml of normal saline. The suspensions density was adapted to 0.5 McFarland standards. The plate surface of Muller-Hinton agar (Himedia India) was inoculated with bacteria by a sterile swab. The swab was soaked into the suspension and pressed into the side of the test tube to discard exuberance fluid, then inoculate the Muller-Hinton agar by streaking method. Antibiotic discs were applied to the inoculated agar and incubated.
at 37°C overnight. The diameter of zone of growth - inhibition observed was measured and compared to the chart of National Committee for Clinical Laboratory Standards (NCCLS).

Results

Sixty four isolates were identified as *P. mirabilis* consisted of 32 isolates (12.8%) obtained from urine, 17 isolates (9.18%) obtained from external ear, 3 isolates (7.5%) obtained from wounds, 4 isolates (4.7%) obtained from burns and 8 isolates (8.88%) obtained from high cervical and endometrium cervical (Table 2).

Table (2): Distribution of *P. mirabilis* among various clinical sources

<table>
<thead>
<tr>
<th>Type of samples</th>
<th>No. of samples (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine</td>
<td>32 (12.8)</td>
</tr>
<tr>
<td>External ear</td>
<td>17 (9.18)</td>
</tr>
<tr>
<td>Wounds</td>
<td>3 (7.5)</td>
</tr>
<tr>
<td>Burns</td>
<td>4 (4.7)</td>
</tr>
<tr>
<td>High cervical and endometrium cervical</td>
<td>8 (8.88)</td>
</tr>
<tr>
<td>Total</td>
<td>64 (9.84)</td>
</tr>
</tbody>
</table>

Table (3): Percentage (%) of antimicrobial resistance and sensitivity of *P. mirabilis*

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Resistance isolates</th>
<th>Sensitive isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>(%)</td>
</tr>
<tr>
<td>Penicillin</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>Augmentin</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>55</td>
<td>86.02</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>58</td>
<td>90.62</td>
</tr>
<tr>
<td>Impenem</td>
<td>12</td>
<td>18.75</td>
</tr>
<tr>
<td>Meropenem</td>
<td>10</td>
<td>15.62</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>35</td>
<td>54.68</td>
</tr>
<tr>
<td>Amikacin</td>
<td>20</td>
<td>31.25</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>49</td>
<td>76.56</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>52</td>
<td>81.25</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>55</td>
<td>85.93</td>
</tr>
<tr>
<td>Netlimicin</td>
<td>52</td>
<td>81.25</td>
</tr>
</tbody>
</table>

Table (4): The numbers and percentages of the genes of Virulence factors for 20 *P. mirabilis* isolate

<table>
<thead>
<tr>
<th>Virulence factors genes</th>
<th>No. P. mirabilis isolates</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ureC</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>mrpA</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>flaA</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>hpmA</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>luxS</td>
<td>11</td>
<td>55</td>
</tr>
</tbody>
</table>

Susceptibility of *P. mirabilis* isolates to different antimicrobial agents

(Table3) shows a higher percentage of resistance to both Penicillin and amoxicillin with clavulanic acid (100%), while, the lowest resistance with imipenem and Meropenem (18.75% and 15.62 %), respectively.

Virulence factors of *P. mirabilis*

The results of the PCR for 20 *P. mirabilis* isolates showed that higher percentage of gene flaA (100%), while, the lowest percentage of gene mrpA (40%) (Table 4). Figure (1, 2, 3, 4, 5) shows that PCR amplified production for 20 *P. mirabilis*. Figure (1): PCR amplified production of *P. mirabilis* isolates using ureC gene primers. M: marker ladder (100-2000 bp). Lanes 1-12 the isolates showed positive results with ureC gene, (80mA and 100V) for one hour.
Discussion

Isolation and identification

Sixty four isolates were identified as *P. mirabilis* consisted of 32 isolates (12.8%) obtained from urine, 17 isolates (9.18%) obtained from external ear, 3 isolates (7.5%) obtained from wounds, 4 isolates (4.7%) obtained from burns and 8 isolates (8.88%) obtained from high cervical and endometrium cervical. We analyzed resistance to 12 antibiotics belonging to two groups: beta-lactams and aminoglycosides all isolates showed microbiological resistance Penicillin, amoxicillin with clavulanic acid (100%), this result agrees with similar studies both of (10,8) Cefotaxime (86%), this result agrees with (2) about (83%), but this current result not agrees with (4) about (100%), also Cephalexin (90.62%) this result agrees with (10) about (80%), but this current result agrees with (8) about (42.85%). As for antibiotic aminoglycosides Gentamycin about (54.68%) this result agrees with (6) about (50%) but not agrees with (20) about (33%), also Amikacin (31.25%) this result agrees with (11) about (38.4%) but this current result not agrees with (25,6) about (1.6,5%), respectively. Tobramycin (76.56%) this result agrees with (5) about (81%) but this current result not agrees with (47) about (33.3%). also antibiotics Kanamycin, Streptomycin and Netilmicin about (81.25, 85.93, 81.25)%, respectively.

Virulence factors of *P. mirabilis*

The genotypic characters were tested for 20 *P. mirabilis* isolates in this study in order for detection of the virulence factors. The
results of the PCR for the isolates of *P. mirabilis* showed that (60%) isolates were positive for the presence of *ureC* gene, this result not agrees with (43) value *ureC* gene about (100%). Urease is one of the most important factors in *P. mirabilis* pathogenesis. In vitro (on basic urea agar), urease hydrolyzing urea to alkaline ammonia and carbon dioxide, thereby increasing the pH and will be changing the color of phenol red indicator to pink (19). However, in vivo (human body) this enzyme catalyzes the formation of kidney and bladder stones or to encrust or obstruct indwelling urinary (16). In the current study found *mrpA* gene about (40%), this result agrees with (1) were value *mrpA* gene (35%), but current study not agrees with (28) were value gene (8%). Basic studies showed that serum from mice infected was reacted firmly to MR/P fimbrial preparations, which revealed that these fimbriae are expressed in vivo (32). MR/P fimbriae expression shown to be extremely induced through infection (24). The results of this study revealed that all *P. mirabilis* isolates (100%) possessed flaA gene, this finding is in agreement with other researches (29) and (9) that conducted in Iraq. They reported the presence of flaA gene in *Proteus* isolates (100%, 86.66%) respectively. While (13) found that (100%) of *P. mirabilis* isolates were carrying FlIL gene which encodes for the flagellar basal body protein. In this study the presence of the *hpmA* gene was responsible for hemolycin about (45%), this result agrees with (46) about (46.7%) , while not agrees with (8) about (100%). Finally in current study the presence of the *luxS* gene was responsible for biofilm formation about (55%), this result agrees with (1) who found value *luxS* gene about (47%).

References

4-AL-Autbi DAK. Bacteriological study of some species of Enterobacteriaceae isolated from Hospital birth rooms in Baquba city. Thesis. (2013); Diyala University.

7-Ali HH. Molecular study of some virulence factors of *Proteus mirabilis* isolated from urinary tract infection in Al-Qadisiyah province. Thesis, (2015); College of Sciences, University of Al-Qadisiyah.

